No. | Title |
---|---|
1. | Quantitative Study of Positioning Errors in Digital Panoramic Radiographs: A Retrospective Study |
2. | มิติใหม่ในการใช้เทคนิคการถ่ายภาพทางการแพทย์ขั้นสูงในงานเอ็นโดดอนติกส์ |
3. | Image Quality and ADC Assessment in Turbo Spin-Echo and Echo-Planar Diffusion-Weighted MR Imaging of Tumors of the Head and Neck |
4. | Expanding genotypic and phenotypic spectrums of LTBP3 variants in dental anomalies and short stature syndrome |
5. | Feasibility of deep learning for dental caries classification in bitewing radiographs based on the ICCMS™ radiographic scoring system |
6. | Utility of a diffusion kurtosis model in the differential diagnosis of orofacial tumours |
7. | Assessment of YOLOv3 for caries detection in bitewing radiographs based on the ICCMS™ radiographic scoring system |
8. | A unfied convolution neural network for dental caries classification |
9. | Correction to: Assessment of YOLOv3 for caries detection in bitewing radiographs based on the ICCMS™ radiographic scoring system (Clinical Oral Investigations, (2022), 27, 4, (1731-1742), 10.1007/s00784-022-04801-6) |
10. | Enhancing Caries Detection in Bitewing Radiographs Using YOLOv7 |
11. | A web application for sex and stature estimation from radiographic proximal femur for a Thai population |
12. | A comparison among gamma distribution, intravoxel incoherent motion, and mono-exponential models with turbo spin-echo diffusion-weighted MR imaging in the differential diagnosis of orofacial lesions |
13. | Does Articular Disc Position Change Following Mandibular Setback Surgery? |
14. | การศึกษาเชิงปริมาณของข้อผิดพลาดในการจัดตำแหน่งผู้ป่วยในภาพรังสีปริทัศน์ชนิดดิจิทัล: การศึกษาย้อนหลัง |
15. | A unified convolution neural network for dental caries classification |
16. | Quantitative Study of Positioning Errors in Digital Panoramic Radiographs: A Retrospective Study |
17. | Age Prediction Using Pixel Value Sum from Radiographic Proximal Femur in a Thai Population |
18. | Age Group Classification From Dental Panoramic Radiographs Using Deep Learning Techniques |
19. | CrossViT with ECAP: Enhanced deep learning for jaw lesion classification |
Faculty of Dentistry, Chiang Mai University Suthep Rd., Mueang, Chiang Mai, THAILAND 50200
research-dent@cmu.ac.th
053-944421,28-29
© Research at Dent CMU. All Rights Reserved.